1.9.4. Завдання для самостійної роботи


Повернутися на початок книги
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 
300 301 302 303 

Загрузка...

1.113. Три типи транспортних літаків розподілено між чотирма авіалініями. Задані матриці обсягу перевезень:

A = (a..) =

B = (b)

 

fl5 10   20        50^

20 25   10        17 ;

[з5 50  30        45j

97 54   75        200л

83 102 49        79

71 210 150      180

де аik , bik , (і = 1, 3 , k = 1, 4 ) — накопичені з початку року обсяги пе-ревезень одним літаком і-того типу на авіалінії k-того виду відпові-дно 30 квітня і 1 вересня деякого року. Знайти обсяги перевезень, здійснених літаками кожного типу на кожній авіалінії за минулий період.

1.114. Підприємство випускає три види продукції, яка характе-ризується матрицею – планом X = (10 7 4). При випуску про-дукції використовується 5 видів сировини:

A = (a.,)

(5 10 3 9 2 4 8 5 6 8 6 12 4 3 10

y

де аik – витрати k-того виду сировини на одну одиницю і-того виду продукції. Матриця С = (7 4 5 10 2) задає вартість однієї оди-ниці кожного виду сировини. Визначити: а) необхідну кількість оди-ниць сировини кожного виду для забезпечення плану; б) вартість для одиниці кожного виду продукції; в) загальну вартість сировини при виконанні плану випуску X.

1.115. Підприємство випускає продукцію трьох видів А, В, С. Рівень випуску лімітується обмеженістю ресурсів. Дані наведено в таблиці:

 

Ресурси          Запас ресурсу            Норми витрат на одиницю продукції

 

           

            А         В         С

Сировина, кг 24        5          7          4

Матеріали, кг 75        10        5          20

Обладнання, од        10        5          2          1

Записати в матричній формі умови, яким повинен задовольняти план випуску продукції, припускаючи повне використання ресурсів. Знайти план випуску продукції.

1.116. Цех випускає три види виробів І, ІІ, ІІІ. Застосовуючи три виробничих процеси: штампування, складання і фарбування. Інтен-сивність (в людино-годинах за період) даних процесів складає відпо-відно 40, 40 і 80, а трудомісткість кожного процесу при виробництві продукції задається матрицею

A = a=

ij

(2 2 1 14 1 16 4

де аij — кількість людино-годин, необхідних для і-того процесу об-робки одиниці виробу j-того виду. а) Написати в матричній формі систему рівнянь, яка характеризує рівність потужностей, що вико-ристовуються, і наявних для кожного процесу. б) Яким буде впуск кожного виду продукції, якщо потужності кожного процесу обробки використовуються повністю?

1.117. В економіці і господарській діяльності важливу роль відіграє припущення, що механізм ринкової конкуренції змінює ціну на продукт настільки, що попит і пропозиція зрівноважуються. При-пустимо, що функція попиту на холодильники протягом певного часу має вигляд х1 = 12000 – 0,2х2, де х1 — ціна холодильника, а х2 — відповідна їхня кількість. Нехай функція пропозиції має вигляд: х1 = 300 – 0,1х2. При яких значеннях х1 і х2 настає рівновага?