Схема об’єктів комплексної стандартизації


Повернутися на початок книги
1 2 3 4 5 6 7 8 9 10 11 12 13 14 
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 
75 76 77 78 79 

Загрузка...

Основними критеріями вибору об’єктів комплексної стандартизації є техніко-еко-номічна доцільність стандартизації та рівень технічної досконалості продукції. Методи-чні принципи комплексної стандартизації основані на виявленні взаємозв’язків між по-казниками якості складових частин виробу і предметів праці (1.5.7).

Комплексна стандартизація

принцип системності — встановлення взаємозв’язаних вимог з метою забезпечення вищого рівня якості

принцип оптимальності — визначення оптимальної номенклатури

об’єктів комплексної стандартизації, складу і кількісних значень

показників їх якості

принцип плановості — розробка спеціальних програм комплексної стандартизації об’єктів, їх елементів, які включаються до планів державної та

галузевої стандартизації

Рис. 1.5.7.

Методичні принципи комплексної стандартизації При вирішенні питання розробки комплексних стандартів слід проаналізувати усі складові частини виробу і характеристики матеріалів, з яких він виготовлений, визначи-ти їх кінцеве експлуатаційне призначення. Розробку комплексних стандартів потрібно починати з компонентів, які не мають самостійного експлуатаційного призначення.

У сучасних умовах інструментом практичної організації робіт з комплексної стан-дартизації продукції є розробка та реалізація програм комплексної стандартизації (ПКС). ПКС являє собою плановий документ, що містить оптимальну сукупність пов’язаних но-рмативних документів, які підлягають розробці або перегляду і визначають збалансовані вимоги до технічного рівня та якості продукції (сировини, матеріалів, комплектуючих вузлів, обладнання тощо), строки проведення робіт, перелік заходів та склад виконавців.

Випереджуюча стандартизація. Одним із головних проявів науково-технічного прогресу є постійна, своєчасна заміна застарілих виробів (тих, які ще знаходяться у виробництві) новими, більш прогресивними, які відповідають сучасним вимогам науки, техніки та споживачів і забез-печують значне підвищення продуктивності суспільної праці. У зв’язку з цим основні параметри виробів, які зафіксовані у стандартах, повинні систематично переглядатися з урахуванням довго-строкових прогнозів і випередження темпів науково-технічного прогресу. Цим вимогам відпові-дає випереджуюча стандартизація, яка встановлює підвищені норми та вимоги до об’єктів стан-дартизації відповідно до вже досягнутого на практиці рівня норм і вимог. До того ж підвищені норми та вимоги, згідно з прогнозом, будуть оптимальними й в майбутньому.

Суть випереджуючої стандартизації полягає у встановленні у стандартах перспек-тивних норм та вимог до продукції, які згідно з прогнозами будуть оптимальними у май-бутньому. Це необхідно для того, щоб під час виробництва нової продукції, її технічний рівень та якість не поступались кращим світовим зразкам. Випереджуюча стандартизація здійснюється шляхом розробки окремих або комплексів стандартів. Особливу увагу при-діляють розробці та впровадженню оптимальних показників якості, визначення яких по-винно проводитись на основі прогнозування.

Під прогнозуванням показників якості виробів розуміють науково обґрунтоване завба-чення кількісних значень цих показників, які можуть бути досягнуті до визначеного момен-ту часу. Прогнозування може бути короткостроковим (на строк до 5 років), середньостроко-вим (на строк 5–15 років) і довгостроковим (більше 15 років). Для розробки випереджуючих стандартів, зазвичай, використовують короткострокові та середньострокові прогнози.

Випереджуючі стандарти, які встановлюють перспективні вимоги до якості об’єктів стандартизації, розробляються на основі науково-дослідних, дослідно-конструкторських та дослідно-технологічних робіт, тобто робіт, які виконуються на стадії створення продукції.

 

Випереджаюча стандартизація                  

                                  

                        і          

                       

           

           

                                  

            принцип динамічності        

           

Рис. 1.5.8.

Методичні принципи випереджаючої стандартизації

Масштаби та темпи випереджуючої стандартизації відстають від вимог сьогодення. Велика кількість стандартів на харчові продукти не відповідає сучасному рівню науки і техніки, особливо за показниками безпеки. Не створено випереджуючих стандартів на електромобілі, хоча ця проблема має велике економічне та соціальне значення, адже кі-лькість автомобілів у країні постійно збільшується, і відповідно зростає загазованість міст. Невикористання принципу випереджуючої стандартизації призводить до того, що машини, які умовно пройшли державні випробування, до серійного виробництва не при-ймаються, тому, що їхні техніко-економічні показники встигають застаріти.

Параметрична стандартизація важлива, адже розвиток народного господарства приво-дить до подальшого збільшення типів і типорозмірів виробів, що пов’язано зі створенням нових видів продукції та потребою у широкому розвитку механізації й автоматизації виробництва.

Крім того, для сучасної промисловості властива широка, постійно зростаюча номенк-латура вироблених товарів. У ряді випадків має місце випуск надмірно великої номенк-латури виробів, що схожі за призначенням і незначно відрізняються конструктивним ви-конанням і розмірами. Упорядкування номенклатури і кількості типорозмірів виробів є одним із найважливіших завдань стандартизації.

Це знижує серійність виробництва продукції, ускладнює уніфікацію виробів, гальмує розвиток спеціалізації виробництва, подовжує термін опанування нової техніки, збільшує виробничі витрати, порушує номенклатуру запасних частин, здорожує ремонт, підвищує вартість обслуговування при експлуатації. Тенденція щодо збільшення кількості типів і типорозмірів виробів виникає через неузгодженість різних виробництв та дослідних орга-нізацій, що здійснюють розробку схожих виробів. Упорядкування номенклатури і кількос-ті типорозмірів виробів є одним із найважливіших завдань стандартизації (рис. 1.5.9).

Узгодження параметрів і розмірів різних видів продукції методом параметричної

стандартизації дозволяє ув’язати їх між собою, а також різні галузі промисловості, що дає

великий економічний ефект в масштабах народного господарства країни

Види параметрів продукції

За розміром

За вагою

Що характеризують

продуктивність

машин і приладів

Енергетичні

 

Основні розміри базових деталей (взуття, одягу, столів) Параметри, які ха-рактеризують об'єм (місткість посуду) Розміри взаємозамін-ності (приєднувальні -агрегатів, машин)

Маса окремих виробів Маса спортив-ного інвентарю Маса пакування продукту

Продуктивність вентилятора Швидкість руху транспортного засобу

Потужність двигуна Напруга ламп Витрати палива

 

62

Рис. 1.5.9.

Види параметрів продукції Основою для раціонального скорочення номенклатури і кількості типорозмірів вироб-леної продукції є розробка параметричних стандартів, які встановлюють параметри і розміри найбільш раціональних видів, типів і типорозмірів машин, приладів, обладнання тощо. Ство-рення та використання виробів буде найбільш успішним у тому випадку, коли їх параметри будуть погоджені між собою. Узгодження різних параметрів і розмірів методом параметрич-ної стандартизації дає змогу ув’язати між собою різні галузі промисловості, що призведе до великого економічного ефекту у масштабах усього народного господарства країни.

Система переважних чисел і параметричні ряди

Отже, сутність параметричної стандартизації полягає у тому, що параметри і розмі-ри виробів встановлюють не довільно, а дотримуючись визначених, чітко обґрунтованих рядів переважних чисел. Тому, теоретичною базою сучасної стандартизації є система переважних чисел (рис. 1.5.10).

Тобто, будь-які параметри виробу (продуктивність, число обертів, швидкість, поту-жність, тиск, розміри) керуються певним науково обґрунтованим рядом переважних чи-сел, тоді виріб буде узгоджуваний з іншими, пов’язаними з ним, видами продукції: елек-тродвигуни — з технологічним обладнанням, вантажопідйомними пристроями; вантажо-підйомні пристрої — з вантажними машинами; вантажні машини — з транспортною та-рою; транспортна тара — з споживчою тарою і таке інше.

Параметр продукції — це кількісна характеристика властивостей продукції чи її станів, які визначають призначення продукції та умови її використання. Параметри про-дукції наводяться в нормативних документах.

Згідно з характерними властивостями виробів розрізняють найбільш важливі пара-метри продукції:

•          розмірні параметри (розмір одягу та взуття, місткість посуду);

•          параметри ваги (маса окремих видів спортивного інвентарю);

•          параметри, які характеризують продуктивність машин і приладів (продуктивність вентиляторів, швидкість руху транспортних засобів);

•          енергетичні параметри (потужність двигуна).

У 1953 р. Міжнародна організація зі стандартизації (ІSО) прийняла Міжнародні ре-комендації щодо переважних чисел ІSО/Р3, які стали основою для розроблення парамет-ричних стандартів у багатьох країнах світу. До рекомендацій, крім ряду R5 увійшли ряди Rl0; Riol RAO, які також отримали назву рядів Ренара. Існують ще два додаткових ряди Rso і ДІбо, які використовують тільки в окремих, технічно обґрунтованих випадках.

'           N

— це числа, що рекомендовано обирати переважно перед усіма

Переважні числа

іншими для визначення величин параметрів при створенні виробів.

Приклади використання переважних чисел зустрічаються всюди —

це розміри взуття і одягу, довжина цвяхів, номінальні значення маси

гир, потужність електричних машин тощо

Ч         .           J

Рис. 1.5.10.

Сутність поняття «переважні числа»

У 1955 р. прийнята рекомендація ІSО/Р17 «Керівництво з використання переваж-них чисел і рядів переважних чисел». Відповідно в Україні діє ГОСТ 8032.

Ряди переважних чисел повинні відповідати наступним вимогам:

•          являти собою раціональну систему градацій, що відповідає потребам виготовлення та експлуатації виробів;

•          бути нескінченними, як у бік малих, так і великих чисел, тобто допускати встановлення безмежної кількості параметрів або розмірів у напрямку як збільшення їх значення, так і зменшення;

•          включати усі послідовні десятикратні чи дробові значення кожного числа ряду і одиницю;

•          бути простими, щоб їх було легко запам’ятовувати.

Переважним числам властиві певні математичні закономірності. Так, при встанов-ленні розмірів і параметрів виробів широке застосування знайшли ряди чисел, які побу-довані на основі арифметичної чи геометричної прогресії.

Найпростіші ряди переважних чисел будуються на основі арифметичної прогресії — такої послідовності чисел, в якій різниця між наступним і попереднім членами залиша-ється постійною, тобто:

an = a1 + d (n – 1),

де: a1 — перший член прогресії;

d — різниця прогресії;

n — номер взятого члена.

Позитивним моментом є те, що арифметичний ряд простий, не потребує заокруглен-ня чисел, але його суттєвим недоліком є відносна нерівномірність. у цих рядах є те, що во-ни прості, не потребують заокруглення чисел. Але суттєвим недоліком є відносна нерівно-мірність. При сталій абсолютній різниці між членами ряду відносна нерівномірність різко зменшується. Так, відносна різниця між членами арифметичного ряду 1; 2…10 для чисел 1 і 2 складає 100 %, а для чисел 9–10 усього 11 %. Якщо зміну відносної різниці для членів цього ряду зобразити графічно, то отримаємо залежність, за якою при зростанні абсолют-них значень членів арифметичного ряду відносна різниця зменшується.

Ряди переважних чисел, що основані на арифметичній прогресії, мало використовуються у параметричних стандартах. Вони застосовуються, наприклад, у стандартах розмірів взуття, діа-метрів підшипників коливання, діаметрів метричних різьблень, модулів зубчастих коліс тощо.

У більшості випадків найбільш придатні для стандартизації параметрів геометричні ряди чисел. Однак геометричних рядів нескінченно багато, тому належить вибирати з них такі, які будуть мати певні переваги перед іншими.

Геометрична прогресія — це ряд чисел, в якому кожне наступне число, яке отриму-ють множенням попереднього на одне і теж число, яке називається знаменником прогресії:

an = a1 • qn- де a — перший член;

q"-1 — знаменник прогресії;

п — порядковий номер взятого члена.

Ряд геометричної прогресії являє собою q; qx, qx1; qx2; qx3; <f4; або 1, 2, 4, 8, 16, 32, n...

Геометрична прогресія має ряд корисних властивостей:

1.

Відносна різниця між будь-якими сусідніми членами ряду постійна. Будь-який член

прогресії більше попереднього на 100 %.

2.

Добуток чи частка будь-яких членів прогресії є членом цієї прогресії. Ця властивість використовується при пов’язуванні між собою параметрів, що підлягають стандартизації у межах одного ряду переважних чисел.

Геометричні прогресії дають змогу погоджувати між собою параметри, які зв’язані не тільки лі-нійною, а також й квадратичною, кубічною та іншими залежностями. Ще в Давній Римській імперії діаметри коліс водопроводів були вибрані згідно з геометричною прогресією. У Франції у 1805 р. розміри типографського шрифту було встановлено також відповідно до геометричної прогресії.

Історія утворення рядів переважних чисел пов’язана з ім’ям офіцера французького інже-нерного корпусу Шарля Ренара, який у 1877-1879 рр. заклав наукові основи щодо використан-ня переважних чисел для конструювання. Враховуючи перевагу геометричної прогресії, Ренар за основу довжину і побудував ряд, прийнявши такий знаменник прогресії, який забезпечує десятикратне збільшення кожного члена ряду, тобто aQ5 = Wa, звідки Q = fit) .

Ш

tfo

af~°f .

Таким чином, Ренар одержав числовий ряд: а; а"\ аС"У, аС"У , аС"0)4, При обчислюванні з точністю до п’ятої цифри цей ряд має вигляд: \а, 1,5849а; 2,5119а; 3,981 \а, 6,3096а; 10а. Для практичного користування ці значення були замінені більш зручними заокругленими величинами. При цьому «а» визначено числом Юк, де к — будь-яке ціле позитивне чи від’ємне число, а також нуль.

В останньому випадку при к = 0 отримують ряд Ренара R5: 1; 1,6; 2,5; 4; 6,3; 10, який може бути продовжений в обох напрямках. Членами ряду переважних чисел є заокруглені зна-чення членів ряду геометричної прогресії в інтервалі 1...10, які застосовуються при встанов-ленні градацій геометричних параметрів (табл. 1.5.3).

Таблиця 1.5.3

Ряди Ренара

Основні

Додаткові

 

Позначення ряду       Знаменник професії (коефіцієнт градації)   Кількість членів ряду

            5 10 =1,6        5

10        1010=1,25      10

20        20 10=1,12     20

40        40 10 =1,059  40

"^ ^ 80 80 10 =1,029  80

^^ 160 160 10=1,015 160

Параметри і розміри виробів, що випускають серійно, встановлюють відповідно до основних рядів переважних чисел. Але допускається використання похідних рядів. Їх отримують із основних рядів шляхом відбору 2-, 3-, 4-го чи n-го члена ос-новного чи додаткового ряду. Наприклад, R5/2 — похідний ряд, отриманий з кожного 2-го члена основного ряду R5. Похідні ряди використовують тоді, коли жоден з осно-вних рядів не задовольняє заданим вимогам і запроваджуються градації числових характеристик, які залежать від параметрів і розмірів, що утворені на базі основних рядів.

Введення в усіх галузях промисловості єдиного порядку встановлення числових значень,

параметрів і розмірів для об’єктів стандартизації, а також перехід від одних числових

значень параметрів до інших за допомогою системи переважних чисел (параметричних

рядів) дозволяє зменшувати кількість типорозмірів, економити матеріали, погоджує і

пов’язує між собою різні види виробів, матеріалів, напівфабрикатів, транспортних засобів,

виробничого устаткування.

Розробка параметричних стандартів на обєкти стандартизації здійснюється поетапно:

•          вибір номенклатури параметрів;

•          вибір діапазону параметричного ряду;

•          вибір градації параметричного ряду. Параметричний ряд — це сукупність числових значень параметрів, яка побудова-на в певному діапазоні на основі прийнятої системи градацій.

Для визначення параметричного ряду слід враховувати його дві характеристики: діапазон ряду та градацію. Діапазон ряду — це інтервал, обмежений крайніми значен-нями членів ряду. Градацією параметричного ряду називають математичну закономі-рність, що визначає характер інтервалів між членами ряду в певному діапазоні. Вибір оптимальної градації параметричного ряду зводиться до знаходження такого ряду переважних чисел, який найбільшим чином відповідав вимогам народного господарст-ва країни.

Використання системи переважних чисел з різними рядами допускає можли-вість їх комбінування. Більшість параметричних рядів, включених до чинних параме-тричних стандартів, побудована на основі ряду R10. Це дає підставу вважати, що ряд R10 є нині найбільш доцільним для побудови параметричних рядів на машини та устаткування.

Похідні ряди — ряди, які утворюються від основних чи додаткових за допомогою відбору n-х членів.

Приклади похідних рядів:

•          R 10/2 (1,25...) — 1,25; 20; 3,15; 5,0 ...

•          R 40/3 (6,3 ... 21,2) — 6,3; 7,5; 9,0; 10,6; 12,5; 15,0; 18,0; 21,2.

•          R 5 (1,0 ...6,3)                         1,0; 1,6; 2,5; 4,0; 6,3; 8,0; 10,0.

•          R 10 (6,3 ... 10,0)       ^ Параметричний ряд R40 (з округленими значеннями переважних чисел) — 1,0; 1,06; 1,12; 1,18; 1,25; 1,32; 1,40; 1,50; 1,60; 1,70; 1,80. Діапазон ряду — 1,0 … 1,80. Градація ряду — 1,06.